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Abstract
This research investigates the optimal control problem of heavy haul train for the minimization of longitudinal forces. As
the heavy haul train is much heavier and longer than ordinary train, the in-train forces should be carefully manipulated to
reduce the train’s maintenance cost and, most importantly, to ensure operation safety. Specifically, the limitations of
pneumatically controlled braking system increase the need for the optimal control strategy to accounting for future
grades, speed restrictions and uncertain disturbances. In this article, the stochastic dynamic programming model is adopt
to set up a rigorous mathematical formulation for heavy haul train control, and approximate dynamic programming algo-
rithm with lookup table representation is introduced to find the optimal solution of the considered problem. By handling
the existed uncertainties in a mathematical way, the post-decision state variable is utilized to represent the state of the
heavy haul train after we have made a control decision but before any exogenous information has arrived. Finally, the
computational results demonstrate the effectiveness and performance of the proposed model and algorithm.
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Introduction

Background and literature review

As an efficient and reliable traffic mode, heavy haul
railway transportation is currently one of the main
methods that provide the services for transporting
coals, petroleum, minerals and so on in many coun-
tries. In order to increase haulage capacity, trains have
increased from a maximum of 10,000 to 20,000 ton on
the Datong-Qinhuangdao and Shuohuang heavy haul
railways in China.1 Thus, the train control strategies
will need to be developed and refined to heavier and
longer trains accordingly.

In general, a desirable efficient operation strategy
means the minimization of energy consumption, service
quality in terms of punctuality and operation safety
closely linked with in-train forces.2–4 Over the last few
decades, a number of optimizing algorithms and

advanced control techniques, such as fuzzy control,5

coasting control6,7 and model predictive control
(MPC),8–10 have been proposed for the improvement of
the three performance indicators. Nevertheless, as
pointed out by Zhang and Zhuan,8 it is impossible to
make any improvement on energy performance without
making the two other performance indicators worse
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off, and we should choose the proper strategy regard-
ing the desired performance in practice.

Since China’s two main heavy haul dedicated lines
are responsible for transporting coal from west to east,
the routes are mainly downwards. When the train is
generally travelling downwards, both dynamic braking
and the air braking are applied to keep the train speed
within the required range.11 As only the locomotives in
the heavy haul train can supply dynamic braking
forces, the air braking force is on the leading position
in regulating train’s speed. Applying air braking will
inevitably give rise to longitudinal forces within the
train and lead to excessive tear-and-wear on braking
unit. It is believed that the longitudinal coupler forces
are the direct cause of coupler damages, which may
lead to train operation disasters such as derailment.12

Under this circumstance, the demand on a desirable
train operation strategy to optimize the operation
safety determined by in-train forces has escalated
accordingly, combined with maintaining commercial
punctuality. In this sense, finding the optimal control
method for heavy haul trains to minimize the longitudi-
nal forces is one of the core problems in both fields of
theoretic research and practical operation.

Following this trend, substantial work has been done
to optimize the operation safety determined by in-train
forces,13 designed an open-loop controller and took
advantage of Lagrange multiplier approach to deter-
mine the power splitting between the neighbouring
locomotives in order to minimize the longitudinal cou-
pler forces. The authors of Nasr and Mohammadi14

investigated the effects of the train brake delay time on
longitudinal dynamic behaviour of the freight trains
using simulation method and observed that the magni-
tude of the maximum tensile force relatively increased
as brake delay time decreased. Zhang and Zhuan12

introduced an MPC approach to schedule the heavy
haul train to operate optimally during a long section,
and the penalty for coupler damping was recommended
to alleviate the cyclic vibration of couplers.

To the best of our knowledge although the majority
of the literature had paid more attention to the optimal
operations of heavy haul train under various scenarios,
for example, cruising control,15 station stopping,16

delay recovery,17 considering the real-world operation
environments such as input constraints,18 communica-
tion delays,19 the uncertain of some performance para-
meters20 and so on, the optimal air braking control
strategy when travelling on steep descent is not as thor-
oughly studied as others, but its importance for trans-
portation safety and efficiency should not be
underestimated.

Unfortunately, the pneumatic braking system of
heavy haul train has a number of limitations such as
brake delays throughout the train and minimum brake
application duration. Some pneumatic braking systems

even do not have the graduated release function. These
disadvantages of air braking impose stringent require-
ments on safety, reliability and service quality, thereby
reducing the flexibility to optimize both longitudinal
in-train forces and travelling time, simultaneously,
increasing the complexity of the corresponding optimi-
zation models.4 It is worth noting that due to the
uncertain environment of real-world operations, such
as wind gust, weather and gradient resistance, the
detailed characteristics of train dynamic model cannot
be captured accurately.3,21 Recently, modelling the
uncertainty has become a hot research issue in control-
ler design, and adaptive robust control method is usu-
ally employed to achieve high-accuracy trajectory
tracking performance.22,23

As far as I know, most solution methodologies in
the literature, such as quadratic programming, linear
quadratic regulator and MPC, have limitations in han-
dling these real-life operational requirements under
uncertainty. For this reason, some powerful algorith-
mic strategies are required to solve the constrained
optimization problem in the presence of various forms
of randomness.

Proposed approach

As an emerging technology for multistage stochastic,
dynamic problems that arise in operations research,
approximate dynamic programming (ADP) offers an
extremely flexible modelling framework which makes it
possible to combine the strengths of simulation with the
intelligence of optimization.24,25 To handle the existed
uncertainties in a mathematical way, the post-decision
state variable is introduced to represent the state of the
system after we have made a decision but before any
exogenous information has arrived. Exogenous infor-
mation referring to the sources of uncertain factors can
be viewed as information that becomes available over
time under practical circumstance. This means that the
value function is a deterministic function of the state
and action, a feature that makes it suitable for a wide
range of problems spanning real-time planning of loco-
motives,26 dynamic routing and scheduling,27,28 health
resource deployment29 and large-scale fleet manage-
ment problems.30

With the consideration of practical constraints asso-
ciated with the optimal operation of heavy haul train
on steep descent, we are particularly interested in find-
ing the corresponding approximate optimal control
strategies to both enhance safety and guarantee service
quality. This research aims to provide the following
contributions to the optimal heavy haul train controller
design:

1. In this study, the optimal control problem with
respect to the cascade mass point model of heavy
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haul train is transformed into a unified stochastic
dynamic programming model. In the formulation,
we can capture the impact of certain control action
on the future, and then communicate this impact
backward. By this way, decisions can be made
more intelligently. Furthermore, operational regu-
lations associated with the air braking are detailed
and formulated as constraints on the possible solu-
tions to ensure safety and punctuality.

2. A standard ADP algorithm with lookup table rep-
resentation is formulated for finding the optimal
operation strategy with the least in-train forces.
Some critical algorithmic issues, such as such as
post-decision state variable, exploration and
exploitation, stepsize rules, are discussed to effec-
tively solve the problem. By adopting different sets
of parameters and simulation scenarios, the com-
putational results show that the proposed approa-
cher can efficiently generate optimal solutions for
the considered problems within acceptable compu-
tational time.

The rest of this article is organized as follows.
Section ‘Problem description’ gives a description for
the non-linear dynamic model of the heavy haul train
and then details the problem of running in a steep des-
cent. In the next section, mathematical formulations of
the optimal control problem are described. Section
‘ADP approach’ describes the algorithmic strategy,
focusing primarily on the use of ADP to solve the
problem of optimizing over time. Simulation results are
discussed in section ‘Simulation results and discussions’
for demonstrating the validity and effectiveness of the
proposed approaches. Some conclusions and further
works are given in the final section.

Problem description

The dynamic model of heavy haul train

Essentially, heavy haul trains are distributed powered
networked system constituted with many locomotives
and wagons. Figure 1 is the sketch of the longitudinal
motion. Assuming the train consists of n cars and q

locomotives which locate at positions j1, j2 . . . , jq.

According to Newton’s law, the longitudinal dynamics
for each car can be established by the following
equation

mi _vi = ui + fi�1 � fi � FR
i , i= 1, 2, . . . , n ð1Þ

where mi is the mass of the ith car, ui is the traction or
braking force added to the ith car, fi denotes the in-train
force between the ith and (i + 1)th car and FR

i is the
general running resistance.

In general, FR
i consists of aerodynamic drag and roll-

ing resistance MR
i , track slope resistance LR

i and curva-
ture resistance CR

i

FR
i =MR

i + LR
i +CR

i ð2Þ

The running resistance MR
i depends on the physical

properties of the high-speed train and its current speed
combines both rolling resistance and air resistance. The
former linearly increases as a function of the adhesion
and the wheel rims. The latter quadratically increases
as a function of the train velocity. According to the
Davis31 equation, constants c0, c1 and c2 are introduced
to approximate the running resistance as follows

MR
i =mi c0 + c1vi + c2v2

i

� �
ð3Þ

Line resistance LR
i depends on the train mass and the

slope angle u

LR
i =mig sin u ð4Þ

where g is the gravity constant g=9.81N/kg and u is
measured in meters per thousand.

Concerning curve resistance, the value of CR
i is

approximated32

CR
i =mig

700

R
ð5Þ

where R is the track curve radius.
As mentioned in Chou and Xia,15 here we also

assume that the coupler system is taken as a spring with
damping. Thus, the in-train force can be established as
follows

Figure 1. Longitudinal dynamics of heavy haul train.
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fi = kili + di(vi � vi+ 1), i= 1, 2, . . . , n� 1 ð6Þ

where ki.0 is the stiffness coefficient and di is damping
constants, which are determined by the characteristics
of couplers in the heavy haul train. As li represents the
absolute extension or compression length of the ith cou-
pler corresponding to the original length without any
elastic deformation, it could be positive or negative.

For a heavy haul train, the control inputs for loco-
motives can be either traction forces or braking forces,
while the efforts of wagons are only braking forces. To

address the braking control issue, there are basically
two types of braking units equipped in heavy haul train
including rheostatic unit and pneumatic unit. The rheo-
static brake is also called regenerative brake, which can
be fed back to power other locomotives. For rheostatic
braking system, the series excitation resistor can be
adjusted to control the braking current so that continu-
ous braking forces can be produced to slow down or
stop the train. In pneumatic braking system, braking
forces are applied by reducing the air pressure in the
train air braking pipe.14

Additionally, the running train will inevitably suffer
from the uncertain disturbance from real-world envir-
onments such as wind gust and weather condition,
which may affect the transient longitudinal forces as
well as service quality.33 Thus, the parameter w can be
expressed as the uncertain variable to characterize
uncertain information. As air brakes are added as brak-
ing forces to all cars and rheostatic brake is equipped
only to locomotives, the dynamic equation of n-cars
heavy haul train (1) is equivalent to

mi _vi(t)= ua
i � br

i � b
p
i + fi�1 � fi � FR

i +w, i= j1, j2, . . . , jq,
mi _vi(t)= � b

p
i + fi�1 � fi � FR

i +w, i= 1, 2, . . . , n, i 6¼ j1, j2, . . . , jq

�
ð7Þ

where ua
i is the traction efforts, br

i is the rheostatic brake
forces and b

p
i is referred to air braking forces.

Control problem on steep decent

Generally, locomotive operation involves four possible
operation modes: accelerating, cruising, coasting and
braking. In accelerating phrase, traction effort is
applied to accelerate the train and overcome the run-
ning resistance. Under most conditions, running resis-
tance is positive so that partial traction effort is applied
to maintain a constant speed in cruising state. During

coasting, both traction force and braking force are
switched off, which present opportunities for energy
saving. Braking is to slow the train or to bring it to a
stop. However, on track with steep downward gradi-
ents, the power-hold-coast-brake strategy may not be
feasible and it will be necessary to replace the hold
phase with one or more coast phases on the steep
downhill sections.7

Definition 1. If the train speed increases on a grade when
the maximum rheostatic brake is applied, then we say this
grade is called a steep downhill. In this grade, we have

mi _vi(t)= � br
max + fi�1 � fi � FR

i +wi.0, i= j1, j2, . . . , jq,
mi _vi(t)= fi�1 � fi � FR

i +wi.0, i= 1, 2, . . . , n, i 6¼ j1, j2, . . . , jq

�
ð8Þ

Remark 1. Obviously, on a steep downhill, it may need
particle air braking to prevent train from over-speeding.
Considering the braking pipe needs to restore pressure
completely to achieve effective release, the speed profile
has a definite cyclic nature.34 Thus, constraints should
be used to guarantee the safe operations of heavy haul
train. First, air-filled time in periodic train braking
should be ensured. Second, as altering braking rates fre-
quently gives rise to longitudinal forces within the train
and leads to excessive tear-and-wear on braking unit,
each braking notch should maintain certain time before
transferred to another one. In addition, the switching
of notches has to satisfy several guidelines. For example,
coasting must be applied as an intermediate step if a
driver wants to switch between motoring and braking.
One switching should not jump too many notches.

In practice, there are more than one possible set of
control instructions, which enable an inter-station run
under the same runtime and speed requirements, but
the resulting longitudinal forces may vary significantly.

A critical issue in above problem is the brake notches
decision policy, that is, how to choose a brake notch,
and when to perform or release the corresponding air
brake. If these policies are not designed carefully, the
longitudinal forces within the train may increase rapidly
and the speed may exceed the limit, both of which will
significantly affect the safety and efficiency of heavy
haul train movement. Therefore, we focus on develop-
ing optimal control algorithms to achieve timely train
speed adjustment with minimized in-train forces, which
will be studied in the following section.

4 Advances in Mechanical Engineering
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Mathematical formulations

This section will formulate the optimal control problem
on steep downhill as a stochastic dynamic program-
ming model with the minimized in-train forces criteria.
In order to satisfy the requirements for punctuality, we
should make sure that the train can cover the distance
within the expected travel time T . Assuming the time
interval between each continuous state is Dt, the con-
trol problem is divided into N stages, where N is deter-
mined by T=Dt. At each stage, we make a decision on a
proper braking notch to select. The following discus-
sion focuses on detailing each part of the model, such
as states, actions, exogenous information, cost func-
tion, state transition function and objective function.

States

We regard each car in the heavy haul train as an intelli-
gent agent. A policy defines the agent’s way of behav-
ing at each decision epoch. We measure the state St just
before we make a decision. These decision epochs are
modelled in discrete time, but the physical process
occurs in continuous time. As shown in the following,
the current position of the first car, relative coupler dis-
placements and speeds are considered as state variables
of the train

St =(t, pt, Lt,Vt) t= 1, 2, . . . ,N ð9Þ

where pt is the position of the first car, the vector
Lt = ½l1

t , l
2
t , . . . , ln�1

t �T gives the relative coupler displa-
cements for all cars and Vt 2 R

n is the speed vector of
cars in the heavy haul train.

Remark 2. For simplicity, only the position of the first
car is considered in the state variable. At equilibrium
state, the distances between the (i + 1)th car and the
ith car Li�1, i are some known values determined accord-
ing to the length of cars and the natural length of cou-
pler. As a result, the exact position of each car in heavy
haul train can be obtained from Li�1, i and li.

Actions

In the train control process, actions may affect not only
the immediate reward, but also the rewards of the fol-
lowing states. When heavy haul train is travelling on
steep downward slope, the maximum rheostatic brake
is used on each locomotive and air brake is applied on
every car. Without the loss of generality, we suppose B
be the space of all possible settings of air braking force.
Thus, the following equations are obtained.

ui = br
max + b

p
i , i= j1, j2, . . . , jq

ui = b
p
i , i= 1, . . . , n, i 6¼ j1, j2, . . . , jq

�
ð10Þ

where b
p
i is the air brake force for the ith car and

b
p
i 2 B [ 0.
As the maximum rheostatic brake can be treated as

a constant for certain type of locomotive, the decision
variables are defined as follows

xt = ½x1
t , . . . , xi

t, . . . , xn
t �

T

= ½bp
1, . . . , bp

i , . . . , bp
n�

T

According to Rao,35 calculation equation of the
braking force can be written as follows

b
p
i =uh � qh � bc � 103 ð11Þ

where uh is the equivalent friction coefficient, qh

denotes the equivalent emergency braking ratio and bc

represents the service braking coefficient.
In general, uh and qh have close relationship with

the physical characteristics of locomotives and wagons,
and bc is selected according to the constant of train
pipe pressure and the specific train pipe pressure reduc-
tion when the train implements air braking. Thus, the
braking force is determined by the pressure reduction.
According to the characteristics of pneumatic braking
system, the possible pressure reduction amount is usu-
ally from 50 to 100 kPa with an interval of 10 kPa. In
practical operation, the selected pressure reduction is
not more than 100kPa considering safety factors.

Heavy haul trains have a number of limitations that
need to be carefully manipulated when determining the
optimal action. In order to guarantee the requirements
associated with safe operation and maintenance cost,
constraints on decision variables xi

t for each car should
be contemplated considering both the operational fac-
tors and the capacities of air braking.

Braking force constraints. It is worth noting that although
electronically controlled pneumatic (ECP) braking sys-
tem has been developed to provide each car with differ-
ent air braking efforts, this technology is not
implemented in practical heavy haul train lines in
China on a visible scale due to high operating cost. As
a result, it is reasonable to assume that the braking
force is identical for cars controlled by the same loco-
motive. The corresponding constraint is below

x
g
t = xh

t , 8jk � g, h\jk + 1, k = 1, 2, . . . , q� 1 ð12Þ

Air-filled time constraints. Considering the features of air
braking, we should reserve enough time to fill the air
tanks so that we can count on the air brakes. The fol-
lowing air-filled time constraints are formulated to cap-
ture this characteristic

Wang et al. 5
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h� g � s, 80� g\r\h�N ,
xi

g 6¼ 0, xi
r = 0, xi

h 6¼ 0, i= 1, . . . , n

�
ð13Þ

where s denotes the minimum air-filled time.

Minimum hold on time constraints. In general, altering
braking rates frequently not only gives rise to longitudi-
nal forces within the train, but also leads to excessive
tear-and-wear on braking unit. Therefore, switching
forth and back between adjacent notches must be
avoided. Once a braking notch is triggered, it should
maintain certain time before transferred to another
one.

If we use t to denote the minimum hold on time, we
have

h� g � t, 81� g\h�N ,
xi

g�1 = 0, xi
g 6¼ 0, xi

h = 0, i= 1, . . . , n

�
ð14Þ

Graduated release constraints. At present, most heavy
haul train pneumatic braking systems do not equip the
graduated releasing function in China. As a result,
coasting must be applied as an intermediate step if we
plan to switch to a brake notch with smaller braking
force from a bigger braking force notch. Then, the cor-
responding constraints can be formulated as follows

xi
h = 0, xi

g 6¼ 0, i= 1, . . . , n ð15Þ

where 1� g\h�N and h=minfhjxi
g 6¼ xi

hg.
Let X t be the set of all xt that satisfies constraints

(10)–(15) at stage t. Furthermore, we define X p
t (St) as

the decision function that determines decision xt at
stage t under policy p, given state St. Each element
p 2 P refers to a different policy and P denotes the set
of all implementable policies.

Exogenous information

In practice, the running heavy haul train will inevitably
suffer from the wind gust, weather condition and other
real-world environment factors. These unfavourable
factors could be treated as uncertain external distur-
bances to heavy haul train. To handle the existed uncer-
tainties in a mathematical way, we use exogenous
information to describe the disturbances that arrive to
the train exogenously, representing the sources of ran-
domness. The exogenous information consists of the
realization of the disruption statuses of all the cars. As
the disruption statuses may change as we proceed to
the next stage, the systems exogenous information can
be written as

Wt + 1 = bDt + 1 ð16Þ

where bDt + 1 denotes the disruption status realization
that becomes known between stages t and t + 1.

State transition function

The transition function details the system state transi-
tion. Given the current state St =(t, pt, Lt,Vt), if we
choose an action xt =X p

t (St) to control the train and
then observe the new exogenous information
Wt + 1 = bDt+ 1. The system transits to a new state St + 1

according to the following transition function

St + 1 = SM (St, xt,Wt + 1) ð17Þ

As addressed above, we can derive from equations
(6) and (8) that

_�z(t)= �A�z(t)+ �B�u(t)+F+W ð18Þ

where

�z(t)= ½l1, l2, . . . , ln�1, v1, v2, . . . , vn�T

�u(t)= ½bp
1, . . . , b

p
j1
+ br

max, b
p
j1 + 1, . . . , b

p
jq
+ br

max, b
p
jq + 1, . . .|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

n

�T

�A=
A11 A12

A21 A22

� �
, A11 = 0(n�1)3 (n�1)

A12 =

1 �1 0 0 � � �
0 1 �1 0 � � �

0 � � � 0 1 �1

2
664

3
775
(n�1)3 n

A21 =

� k1

m1

0 0 � � � 0

k1

m2

� k2

m2

0 � � � 0

0 � � � 0
kn�2

mn�1

� kn�1

mn�1

0 � � � 0 0
kn�1

mn

2
66666666664

3
77777777775

n 3 (n�1)

A22 =

�c1 � c2v1 �
d1

m1

d1

m2

0

0

d1

m1

�c1 � c2v2 �
d1 + d2

m2� � �
� � �

0
d2

m2

d2

mn�1

0

2
66666664

� � �
� � �

�c1 � c2vn�1 �
dn�1 + dn�2

mn�1

dn�1

mn

0

0
dn�1

mn�1

�c1 � c2vn �
dn�1

mn

3
7777775

n 3 n
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�B= ½0n 3 (n�1), In 3 n�T , W = ½0, . . . , 0|fflfflfflffl{zfflfflfflffl}
n�1

w1, . . . ,wn|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
n

�T

F= ½g sin u� c0, . . . , g sin u� c0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n

�T

In order to apply the stochastic dynamic program-
ming framework, the continuous time-domain state-
space equation (18) is discretized by the zero-order hold
method with a sampling period Dt, and the detailed
transition function can be described as follows

Lt + 1

Vt + 1

� �
=A

Lt

Vt

� �
+Bxt +F+W ð19Þ

where A= e
�ADt, B=

Ð Dt

0
e

�Atdt�B and xt =

½x1
t , . . . , xj1

t + br
max, x

j1 + 1
t , . . . , x

jq
t + br

max, x
jq + 1
t , . . .|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

n

�T .

Besides, according to Newton’s law, pt + 1 is pre-
sented as pt + 1 = pt + v1

t Dt + accDt2=2, where
acc=(� br

max � x1
t + fi�1(t)� fi(t)� FR

i (t)+w1
t )=m1.

Cost function

The actual in-train forces or cost for period t would
be given by Ct(St, xt)=

Pn�1
i= 1 ½(kil

i
t+ 1 + div

i
t + 1

�div
i+ 1
t + 1)

2)�=(n� 1), where li
t+ 1 and vi

t + 1 are calculated
by the same logic as in the state transition function (19).

Objective function

The objective of the stochastic dynamic programming
is to find the optimal policy p 2 P to minimize the
expected total cost (in-train forces) to ensure the safety
of train operation, that is,

min
p2P

E

XN

t = 0

Ct(St, xt)= min
p2P

E

XN

t = 0

Ct(St,X
p
t (St)) ð20Þ

where xt =X p
t (St) is the decision made according to the

decision function X p
t (St) under policy p, given the cur-

rent state St.

ADP approach

If the state, decision and outcome spaces are finite dis-
crete, the stochastic dynamic programming equation
(20) can be solved using the classical backward dynamic
programming algorithm by Bellman’s equations

Vt(St)= min
p2X t

(Ct(St, xt)+E½Vt + 1(St + 1)�) ð21Þ

where Vt(St) is the value function of being in state St, in
which Ct(St, xt) accounts for the immediate cost associ-
ated with the current state St and decision xt, while the

value function Vt + 1(St + 1)=Vt + 1(S
M (St, xt,Wt + 1))

evaluates the future impact of the decision xt under the
realized exogenous information Wt + 1.

Nevertheless, solving equation (21) encounters three
curses of dimensionality (states, decisions and out-
comes), and the dynamic programming approach for
solving Bellman’s equations becomes computationally
intractable. As an alternative, the ADP approach is a
powerful tool to overcome the curses of dimensionality,
especially for complex and large-scale problems.25

In essence, ADP replaces the exact value function
Vt(St) in Bellman’s equation with a statistical approxi-
mation V t(St). Instead of calculating the exact state val-
ues backward in time, ADP steps forward in time by
making decisions based on the approximate value func-
tion V t(St).

In the following sections, we first introduce the post-
decision state variable and then describe ADP algo-
rithm with lookup table representation. Furthermore,
we discuss some key algorithmic issues that we encoun-
tered in the design of ADP algorithm to effectively solve
the problem, such as exploration and exploitation strat-
egy, stepsize rules and so on.

Post-decision state variable

Our algorithmic strategy differs markedly from what is
presented in merging math programming with the tech-
niques of machine learning, particularly in use of the
post-decision state variable.25 Note that St is the state
immediately before we make a decision, sometimes
denoted as the pre-decision state. That is, before certain
air braking command is applied, we can observe the
train’s state, St. The post-decision state Sx

t is the state
immediately after action xt, but before the arrival of
new information Wt + 1. Thus, we can express above
transition function with two steps

Sx
t = SM , x(St, xt) ð22Þ

St+ 1 = SM ,W (Sx
t ,Wt + 1) ð23Þ

In the first step (22), we consider the pure effect of
decision-making, while in the second step (23), we pay
attention to the effect of exogenous information. Given
our action xt, we have a deterministic transition from St

to the so-called post-decision state SM , x(St, xt). In this
way, the expectation in equation (21) is eliminated and
equation (21) is transformed to the following equivalent

Vt(St)= min
p2X t

(Ct(St, xt)+V t+ 1(St + 1))

ADP algorithm

Rather than solving for the value of each state exactly,
ADP steps forwards through time via simulation and
proceeds by iteratively estimating and updating the

Wang et al. 7
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approximate value of being in a state. Algorithm 1 out-
lines the steps of ADP algorithm for solving the opti-
mal heavy haul train control problem. This algorithm
uses a single pass to simulate a sample trajectory using
the current estimates of the value functions, and both
the calculation and updates of the value function take
place as the algorithm progresses forward time.

Algorithm 1. The ADP algorithm around post-decision
states

1: Initialize V
0

t (S
x
t )= 0, t= 0, 1, . . . ,N , and set the

iteration counter n= 1.
2: Set initial train state Sn

0 = S0.
3: for t = 0, 1, . . . ,N do

4: if exploitation then

5: solve v
_n

t =minxt2=t
(Ct(S

n
t , xt)+V

n�1

t (Sx, n
t )).

6: Let xn
t be the action that solves the minimiza-

tion problem:

xn
t = argmin

xt2Bt

(Ct(S
n
t , xt)+V

n�1

t (Sx, n
t )) ð24Þ

7: end if

8: if exploration then

9: randomly choose a solution x, and compute
the observation v

_n

t .
10: end if

11: Use the current observation v
_n

t to update V
n

t�1

(Sx,n
t�1): V

n

t�1(S
x,n
t�1)=(1�an�1)V

n�1

t�1 (S
x,n
t�1)+an�1v

_n

t

12: Obtain the post-decision state: v
_n

t to update
V

n

t�1(S
x, n
t�1):

S
x, n
t = SM , x(Sn

t , x
n
t ):

13: Choose a sample disturbance vector vn with
Monte Carlo simulation, and find the next pre-
decision state

Sn
t+ 1 = SM ,W (Sx, n

t ,Wt + 1(v
n))

14: if train reaches the destination then

15: Go to step 18;
16: end if

17: end for

18: n n+ 1.
19: if n�N then
20: Go to step 2;
21: end if

22: Return the value function (V
N

t (S
x
t ))

N
t = 1.

With the approximate value function around post-
decision state, we can solve for v

_n

t in step 5, which
avoids the expectation within the min operator, but
normally requires more effort in estimating V

n�1

t (Sx, n
t ).

Remark 3. The approximate value function V t + 1( � )
can take a variety of forms such as weighted sum of
basis functions, piecewise linear functions, regression
models, neural networks and the lookup table represen-
tation. As a generic model-free form, the lookup table
is often used when the value function structure can
hardly be clearly defined, which is just the case of heavy
haul train control under study.

Exploration and exploitation strategy

If we constantly exploit the action with the minimum
value, only the values of states with the minimum cost
are updated, and the value of the rest states remains
their initial values. This causes the approximate state
values not improving as we do not explore other states.
On the other hand, if we explore states and actions that
may not look attractive, we could reduce the probabil-
ity of being stuck in suboptimal solutions. In this sense,
we should decide on the trade-off between exploration
and exploitation when making a decision given a cer-
tain state.

One of the simple and intuitive ways of solving this
problem is known as the e-greedy policy, which guaran-
tees that we will visit every (reachable) state infinitely
often.36 Under this policy, with probability e we choose
an action at random from the feasible region X . With
probability 12 e, we choose the action according to
equation (24), in which case we are exploiting our cur-
rent knowledge of the value of each state.

Specifically, the e-greedy policy is a fixed exploration
rate strategy. It is worth noting that the value of being
in a state is mostly dependent on the sample path and
the initial solution in the early iterations. Therefore, it
is reasonable to use the exploration strategy more fre-
quently to improve the quality of the state values at the
beginning, and the exploration rate decreases as the
number of visits to the particular state increase. To do
this, we introduce the exploration rate h= k=n0(St, xt),
where n0(St, xt) is the number of visits to a state-decision
pair and k is a constant. By this way, we can not only
select a random probability of choosing the best action
and choosing alternative actions, but also ensure that
the probability of choosing the best action increases as
we visit the state more.

Stepsize rules

After finding the next action with the exploration/
exploitation strategy, we then confront the problem of
approximating the current value of the visited state
using proper stepsize rule, which plays an important
role on the convergence performance. If we choose a
too small stepsize, the rate of convergence will be slow.
If the stepsize is too large, the performance will be
unstable. Theoretically, there are two kinds of stepsize
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rules including deterministic stepsize rules and stochas-
tic stepsize. Deterministic stepsize do not change with
practical data in the process of approximating state val-
ues, while stochastic stepsize rules adapt to collected
data. For computational convenience, we implement
with a deterministic stepsize rule, that is, the harmonic
stepsize rule, as in equation (25)

an�1 =
a

a+ n0(St, xt)� 1
ð25Þ

where a is a constant. Note that the stepsize depends on
the number of visits to the state-decision pair n0(St, xt),
rather than the iteration counter n.

Simulation results and discussions

In this section, the detailed simulation results are pro-
vided to verify the effectiveness of the proposed control
schemes. The routine of the optimal controller design
can be categorized into two processes including the off-
line and online parts. For the offline part, the mathe-
matical models described earlier are established
according to practical conditions, and the proposed
ADP algorithm is used to find out the optimal policy.
Once the optimal policy is obtained, it is stored in a
table format. Each entry in the table specifies the opti-
mal action given the current train state. For the online
part, the train looks up the policy table to find out the
optimal action corresponding to its current state when
running on railway lines, and then, it executes the
action to get the next state. By this way, the optimal
output is computed repeatedly until the train reaches
the destination.

The simulation parameters given in Table 1 are
based on the heavy haul train from Shuohuang heavy
haul railways in China, where SS4B locomotive and C80

type wagon are applied in large scale.35

Without loss of generality, it is assumed that there
are four locomotives which are evenly spaced in the
heavy haul train. As mentioned in Gao et al.,19 the
dynamics of wagons between locomotives are also
neglected and regarded as rigid body for the sake of
making the results explicit and reducing the unneces-
sary complexity. That is to say, the optimal control of
four locomotive-wagon subgroups is considered.
Noting that there are only a finite number control
notches on-board to control the level of effort delivered
by air braking, which are determined by the train pipe
pressure reductions. According to experimental data
collected from Shuohuang railways, two optional pres-
sure reductions for heavy haul train are 50 and 70kPa,
and corresponding air braking forces could be calcu-
lated according to Rao.35

To further coincide with the real-world conditions,
we take comprehensive measures to capture the para-
meters with regard to constraints on practical opera-
tion, including questionnaires with experienced drivers
about how to drive in a safe and efficient way, observa-
tions in the Shuohuang railway by ourselves and so on.
The related parameters are described as t = 60 s and
s= 130 s.

After performing several preliminarily tests, we set
the constant in the harmonic stepsize rule to a= 5 for
a reasonable convergence and higher quality of solu-
tions. We also consider the exploration rate for choos-
ing random alternative decisions as k= 0:2. To
balance the experimental simplicity and control accu-
racy, Dt is set to be 2 s. In addition, we fix the iteration
counter to N= 2 3 105 for the ADP algorithm to
ensure the convergence. The algorithm is implemented
in MATLAB on the Windows 7.0 platform and evalu-
ated on a personal computer with a 3.3GHz CPU and
4GB memory.

Next, we present two different cases to test the algo-
rithm. In Case 1, we consider the deterministic situa-
tion to test the performance of the ADP algorithm. In
Case 2, associated with the real operation conditions,
different speed limits and gradients are taken into con-
sideration during the trip. Uncertain disturbance from
real-world environment is also taken into account to
verify the robustness of the proposed algorithm.
Finally, to better illustrate the performance of the pro-
posed method, we implement another set of experi-
ments to compare the performances of the proposed
algorithm with other approaches.

Case 1

For the convenience of describing trains movements,
the length of relevant railway track section is given as
10 km, and the gradient is supposed to be 212& along
the whole track. As the heavy haul train is treated as a
cascade mass point model, we assume that the

Table 1. Simulation parameters.

Parameters Value Unit

Locomotive mass 184 3 103 kg
Wagon mass 20 3 103 kg
Locomotive length 20 m
Wagon length 12 m
Coupler length Li�1, i 1 m
Train pipe pressure 600 kPa
ki 10 3 107 N m21

di 10 3 105 N s m21

c0 7.6658 3 1023 N kg21

c1 1.08 3 1024 N s(m kg)21

c2 2.06 3 1025 N s2(m2 kg)21

Max rheostatic brake br
max 323 kN

Number of cars 220

Wang et al. 9
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beginning location of the last car is at the initial site,
and the initial coupler displacement between adjacent
cars is 0. In other word, all cars are travelling on the
same downward slope. Besides, the line limit speed and
initial speed are set to be 80km/h and v0 = 60km=h,
respectively. For the purpose of maintaining the com-
mercial punctuality, the train is supposed to complete
the trip within 550 s.

Figure 2 gives the velocity profiles of each
locomotive-wagon subgroup with respect to the dis-
tance under the optimal policy derived from the ADP

algorithm. As expected, heavy haul train traverses on
its route without exceeding the speed limit. As the ini-
tial speed is far below the track permitted speed, a
coasting operation is first obtained to allow the train
accelerates due to the steep descent of the track. Next,
braking force is applied to keep the train from over-
speeding. Interestingly, a smaller pressure reduction
(50kPa) is selected to slow down the train instead of
the bigger one to effectively control the in-train forces.
It is obvious that the speed profiles have a cyclic fea-
ture to ensure the air-filled time, which are consistent
with practice. In addition, it is worth mentioning that
all the four locomotive-wagon subgroups adopt the
same policy due to the similar operation conditions.

Figure 3 illustrates the learning procedure for the
proposed scheme. Specifically, we plot the evaluated
objective value of the ADP algorithm in every 2 3 103

iterations up to 2 3 105 iterations. At the beginning,
the longitudinal in-train forces are far from the optimal
one and gradually reduced from 1.432 3 105 to about
4.74 3 104 kN after 8 3 104 iterations. After about
1.6 3 105 iterations, the difference between adjacent
objective values is zero, which means that the learned
policy converges to the optimal one.

Case 2

To further test the effectiveness and robustness of the
proposed approach, different speed limits and the

Figure 2. Travel trajectories of different subgroups under
uniform track condition.

Figure 3. The convergence speed.
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gradients are considered as shown in Figures 4 and 5,
respectively. For the sake of alleviating longitudinal
damage to the coupler when releasing the air braking
at low speed, the minimum allowable release speed is
set to be 35km/h. The planned trip time T=650 s is
longer than Case 1 due to the speed limits and initial
speed is set to be v0 = 50km=h. Other parameters are
the same as presented Case 1 unless otherwise noted. In
addition, the uncertain disturbances to the longitudinal
dynamics of the heavy haul train are assumed to be
varying in the interval [0m s22, 0.05m s22], and the
sample path is chosen every 1000 iterations.

Figure 6 shows the velocity/distance curves under
our ADP policy. There is no doubt that the complexity
of track conditions and speed limits make driving on
steep descent more challenging. We can observe that
our optimal policy can achieve safe driving as it never
exceeds the speed limit, while maintaining the release
speed bigger than minimum release speed. Thus, the
train can run safely along such a continuous decent.
Moreover, each locomotive-wagon subgroup follows a
different optimal strategy compared to a unique one in
case 1. This is because each intelligent agent needs to
dynamically adapt the track condition to achieve the
optimal performance. Given that the deceleration
depends also on the gradient of the track, we observe
that the on-board air braking notch with bigger

pressure reduction (70kPa) is chosen at certain decision
epoch to balance the deceleration of different sub-
groups in order to reduce the longitudinal coupler
forces. The results show that ADP policy is able to
learn information from the uncertain environment and
find an optimal policy with real-time data.

Comparative analysis

As one of the most efficient algorithms from the rein-
forcement learning, Q-learning provides a nice mechan-
ism using the value function.36 The Q-factor Q(s, a),
which stores the value of a state-decision pair, is intro-
duced to estimate the value of being in a state and tak-
ing a particular decision. To better illustrate the
performance of the proposed method, we implement
another set of experiments to compare the performance
of the proposed ADP algorithm with Q-learning
method. The harmonic stepsize rule and exploration
rate h=k=n0(St, xt) are used in the Q-learning method,
and the control parameters remain the same as those
used in Case 1 unless otherwise noted. The compari-
sons of convergence are shown in Figure 7.

We observe that Q-learning algorithm converges
faster than ADP in early iterations, but ADP outper-
forms Q-learning after about 24,000 iterations. The
optimal objective values obtained by the ADP and

Figure 4. Speed limits.
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Figure 5. Gradients.

Figure 6. Travel trajectories of different subgroups under different track conditions.
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Q-learning algorithm are 4.02 3 104 and
4.14 3 104 kN, indicating that ADP algorithm has bet-
ter performance in manipulating the in-train forces
than Q-learning algorithm.

To the best of our knowledge, the optimal control
action is either determined based on information of the
leading locomotive (leading controlled strategy (LCS))
or calculated by each locomotive independently (inde-
pendently controlled strategy (ICS)) in the majority of
existing works. To show the advantages of the proposed
method over LCS and ICS, we implement another set
of experiments in the uncertain environment. We use
the Monte Carlo simulation and run the simulation
100 times for all the mentioned approaches. The control

parameters remain the same as those used in Case 2
unless otherwise noted. The performance values of dif-
ferent methods are shown in Table 2.

As LCS and ICS mainly control the heavy haul train
according to current information, future behaviours
during the whole travel are usually not taken into con-
sideration. Therefore, these two approaches are typical
myopic ones, and they cannot accomplish an overall
optimization for the heavy haul train movement due to
the uncertainty during a long trip. It is shown from
Table 2 that there are 17.8% and 30.3% gaps between
the myopic objective values and the optimal one. On
the contrary, our optimal policy, which captures the
impact of decisions on the future and communicates

Figure 7. The comparisons of convergence.

Table 2. Performance comparison.

Strategy Objective value (kN)

Ave Max Min

LCS 4.73 3 104 4.87 3 104 4.65 3 104

ICS 5.24 3 104 5.33 3 104 5.12 3 104

The proposed strategy 4.02 3 104 5.81 3 104 5.56 3 104

LCS: leading controlled strategy; ICS: independently controlled strategy.
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this impact backwards, is capable of giving the best
performance compared with other two methods in all
indices. Therefore, it is safe to conclude that consider-
ing the future impact when making control decisions is
crucial in practical heavy haul train operation, and the
proposed method is effective in enhancing safety and
punctuality.

Conclusion and future work

This article deals with the optimal air braking control
problem of heavy haul train on steep descent. In order
to minimize the in-train coupler forces, while keeping to
schedule and enhancing safety, a multistage stochastic
dynamic programming model is designed with consider-
ation of operational constraints and uncertain distur-
bances to the practical train movement. The model is
capable of capturing the impact of decisions on the
future, and then communicating this impact backwards
so that decisions can be made more intelligently. To
search for an optimal control strategy, ADP algorithm
is introduced to step forward in time by making deci-
sions based on the approximate value function. The
performance of the proposed model and algorithm is
validated by numerical experiments.

For future work, we plan to extend approximate
value function to other forms such as weighted sum of
basis functions, piecewise linear functions and regres-
sion models, which may outperform the lookup table
ADP in terms of both solution accuracy and time.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship, and/or publication of this
article: This article was partially supported by Beijing
Laboratory of Urban Rail Transit and Beijing Key
Laboratory of Urban Rail Transit Automation and Control,
by Beijing Municipal Natural Science Foundation under
grant L161006, by Technological Research and Development
Program of China Railway Corporation under grant
2016X008-B, by Beijing Jiaotong University Technology
Funding Project under grant 2016JBM005.

References

1. Chang C, Wang C, Chen B, et al. A study of a numerical

analysis method for the wheel-rail wear of a heavy-haul

train. Proc IMechE, Part F: J Rail and Rapid Transit

2010; 224: 473–482.
2. Zhuan XT and Xia XH. Optimal scheduling and control

of heavy haul trains equipped with electronically

controlled pneumatic braking systems. IEEE T Contr

Syst T 2007; 15: 1159–1166.
3. Yang LX, Li KP, Gao ZY, et al. Optimizing trains

movement on a railway network. Omega 2012; 40:

619–633.
4. McClanachan M and Cole C. Current train control opti-

mization methods with a view for application in heavy

haul railways. Proc IMechE, Part F: J Rail and Rapid

Transit 2011; 225: 1–12.
5. Yasunobu S and Miyamoto S. A fuzzy control for train

automatic stop control. Trans Soc Instrum Control Eng

2002; 21: 1–9.
6. Howlett P. Optimal strategies for the control of a train.

Automatica 1996; 32: 519–532.
7. Khmelnitsky E. On an optimal control problem of train

operation. IEEE T Automat Contr 2000; 45: 1257–1266.
8. Zhang LJ and Zhuan XT. Optimal operation of heavy-

haul trains equipped with electronically controlled

pneumatic brake systems using model predictive control

methodology. IEEE T Contr Syst T 2014; 22: 13–22.
9. Li SK, De Schutter B, Yang LX, et al. Robust model

predictive control for train regulation in underground

railway transportation. IEEE T Contr Syst T 2016; 24:

1075–1083.
10. Wang X, Zhao Y and Tang T. Fuzzy constrained predic-

tive optimal control of high speed train with actuator

dynamics. Discrete Dyn Nat Soc 2016; 2016:

5704743-1–5704743–14.
11. Sun Y, Cole C, Spiryagin M, et al. Longitudinal heavy

haul train simulations and energy analysis for typical

Australian track routes. Proc IMechE, Part F: J Rail and

Rapid Transit 2014; 228: 355–366.
12. Zhang LJ and Zhuan XT. Development of an optimal

operation approach in the MPC framework for heavy-

haul trains. IEEE T Contr Syst T 2015; 16: 1391–1400.
13. Zhuan XT and Xia XH. Cruise control scheduling of

heavy haul trains. IEEE T Contr Syst T 2006; 14:

757–766.
14. Nasr A and Mohammadi S. The effects of train brake

delay time on in-train forces. Proc IMechE, Part F: J Rail

and Rapid Transit 2010; 224: 523–534.
15. Chou M and Xia XH. Optimal cruise control of heavy-

haul trains equipped with electronically controlled pneu-

matic brake systems. Control Eng Pract 2007; 15:

511–519.
16. Bai Y, Mao B, Ho T, et al. Station stopping of freight

trains with pneumatic braking. Math Probl Eng 2014;

2014: 172549-1–172549-7.
17. Li X, Shou B and Ralescu D. Train rescheduling with

stochastic recovery time: a new track-backup approach.

IEEE T Syst Man Cy A 2014; 44: 1216–1233.
18. Li SK, Yang LX and Gao ZY. Adaptive coordinated

control of multiple high-speed trains with input satura-

tion. Nonlinear Dynam 2016; 83: 2157–2169.
19. Gao K, Huang ZW, Wang J, et al. Decentralized control

of heavy-haul trains with input constraints and communi-

cation delays. Control Eng Pract 2013; 21: 420–427.
20. Li SK, Yang LX and Li KP. Robust output feedback

cruise control for high-speed train movement with uncer-

tain parameters. Chinese Phys B 2015; 24: 010503.

14 Advances in Mechanical Engineering



www.manaraa.com

21. Sun WC, Li JF, Zhang LX, et al. Active suspension con-

trol with frequency band constraints and actuator input

delay. IEEE T Ind Electron 2012; 59: 530–537.
22. Yao JY, Jiao ZX, Ma DW, et al. High-accuracy tracking

control of hydraulic rotary actuators with modelling

uncertainties. IEEE/ASME T Mech 2014; 19: 633–641.
23. Chen Z, Yao B and Wang Q. m-synthesis based adaptive

robust control of linear motor driven stages with high-

frequency dynamics: a case study with comparative

experiments. IEEE/ASME T Mech 2015; 20: 1482–1490.
24. Powell WB, Simao HP and Bouzaiene-Ayari B. Approxi-

mate dynamic programming in transportation and logis-

tics: a unified framework. EURO J Transp Logist 2012; 1:

237–284.
25. Powell WB. Approximate dynamic programming: solving

the curses of dimensionality. New York: John Wiley &

Sons, 2007.
26. Powell WB, Bouzaiene-Ayari B, Lawrence C, et al. Loco-

motive planning at Norfolk Southern: an optimizing

simulator using approximate dynamic programming.

Interfaces 2014; 44: 567–578.
27. Sever D, Dellaert N, Van Woensel T, et al. Dynamic

shortest path problems: hybrid routing policies consider-

ing network disruptions. Comput Oper Res 2013; 40:

2852–2863.

28. Stimpson D and Ganesan R. A reinforcement learning
approach to convoy scheduling on a contested transpor-
tation network. Optim Lett 2015; 9: 1641–1657.

29. Schmid V. Solving the dynamic ambulance relocation
and dispatching problem using approximate dynamic
programming. Eur J Oper Res 2012; 219: 611–621.

30. Simao HP, Day J, George AP, et al. An approximate
dynamic programming algorithm for large-scale fleet
management: a case application. Transport Sci 2009; 43:
178–197.

31. Davis WJ. The tractive resistance of electric locomotives

and cars. Fairfield, CT: General Electric, 1926.
32. Chevrier R, Pellegrini P and Rodriguez J. Energy saving

in railway timetabling: a bi-objective evolutionary
approach for computing alternative running times.
Transport Res C: Emer 2013; 37: 20–41.

33. Li SK, Yang LX, Li KP, et al. Robust sampled-data

cruise control scheduling of high speed train. Transport
Res C: Emer 2014; 46: 274–283.

34. Ma DW. The running safety and longitudinal force of
heavy haul trains on downhill slope of daqin line. Rolling
Stock 2005; 43: 1–5.

35. Rao Z. Train traction calculation. Beijing, China: China
Railway, 2006.

36. Sutton RS and Barto AG. Reinforcement learning: an

introduction. Cambridge, MA: MIT Press, 1998.

Wang et al. 15



www.manaraa.com

Reproduced with permission of copyright owner. Further reproduction
prohibited without permission.


